Comparison of two commercial feeds for the production of marketable *Litopenaeus vannamei* in super-intensive biofloc-dominated zero exchange raceways

# Leandro F. Castro, Wujie Xu, Terry Hanson, Tim Markey, and Tzachi M. Samocha

Texas A&M AgriLife Research Mariculture Lab at Flour Bluff, Corpus Christi, Texas

Aquaculture America 2014 February 9-12, 2014 Seattle, Washington



#### Introduction

- ➤ Feed accounts for more than 50% of total shrimp productions costs
- ➤ Feed also plays an important role in optimizing shrimp growth and can significantly affect the system's water quality
- ➤ Interactions between feed, WQ, and productivity resulted in the development of specially designed feeds for super-intensive biofloc-dominated shrimp production systems

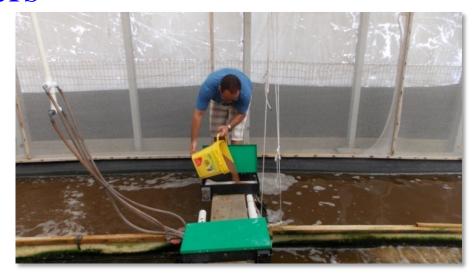


## **Objectives**

- ➤ To evaluate the use of a commercial feed (HI-35) and an experimental feed (EXP) formulated for super-intensive biofloc-dominated shrimp production systems for *Litopenaeus vannamei* under no water exchange
- ➤ To study the changes in selected WQ indicators throughout the trial
- To demonstrate the benefit of using an in-line dissolved oxygen monitoring system as a management tool in a super-intensive, zero-exchange shrimp production system

- ➤ Six 40 m³ EPDM-lined RWs (Firestone Specialty Products, Indianapolis, IN) were filled with a mixture of biofloc-rich water (35 m³) used in an earlier nursery trial, and natural seawater (5 m³)
- > Salinity was adjusted to 30 ppt
- ➤ RWs were stocked at 324/m³ with juveniles (4.7 g) from a cross between Taura Resistant and Fast-Growth genetic lines (KAVA Farms, Los Fresnos, FL), with study duration of 77 d

- ➤ Each RW had eighteen 5.1 cm airlifts, six 1 m long air diffusers (AeroTube, Colorite Division, Tekni-Plex, Austin, TX) and a center longitudinal partition over a 5.1 cm PVC pipe with spray nozzles fed by a Venturi injector operated by a 2 hp pump
- Raceways were operated with no water exchange
- ➤ Evaporation was compensated for weekly using chlorinated municipal freshwater




Three RWs were fed HI-35 feed while the other three received EXP feed (Zeigler Bros., Gardners, PA)

| Component          | HI-35 | EXP  |
|--------------------|-------|------|
| Crude Protein (%)  | 35.8  | 39.5 |
| Lipid (%)          | 8.7   | 9.2  |
| Fiber (%)          | 1.9   | 3.0  |
| Ash (%)            | 9.7   | 12.3 |
| Carbohydrates      | 37.2  | 31.0 |
| VPak <sup>TM</sup> | Yes   | No   |
| Price (\$)         | 1.92  | 1.94 |



- ➤ Rations were initially determined using an assumed FCR of 1.4, growth of 1.5 g/wk, and mortality of 0.5%/wk, and were adjusted according to twice weekly growth samples
- ➤ Feed was distributed continuously 24/7 using belt feeders





- ➤ Every RW had an optical DO monitoring probe and YSI 5500D monitoring system (YSI Inc., Yellow Springs, OH)
- ➤ Temp., salinity, DO, and pH were monitored 2/d; TAN, NO<sub>2</sub>-N, NO<sub>3</sub>-N, reactive P, and VSS were monitored 1/wk, while settleable solids and TSS were measured every two days
- ➤ Alkalinity was monitored 2/wk and was adjusted to 180 mg/L (as CaCO<sub>3</sub>) using sodium bicarbonate and soda ash

- ➤ Each RW was outfitted with a small commercial Foam Fractionator (VL 65 Aquatic Eco Systems, Apopka, FL) and a 450 L Settling Tank
- ➤ FFs & STs were used to control particulate matter and dissolved organics, originally targeting TSS and SS levels in the ranges of 200-300 mg/L and 10-14 mL/L, respectively



## Foam Fractionator-





Settling tanks

- The optical DO probe and the monitoring system provided real-time information 24/7 even in the harsh biofloc environment
- ➤ The system enabled better scheduling of feeding and minimized DO fluctuations

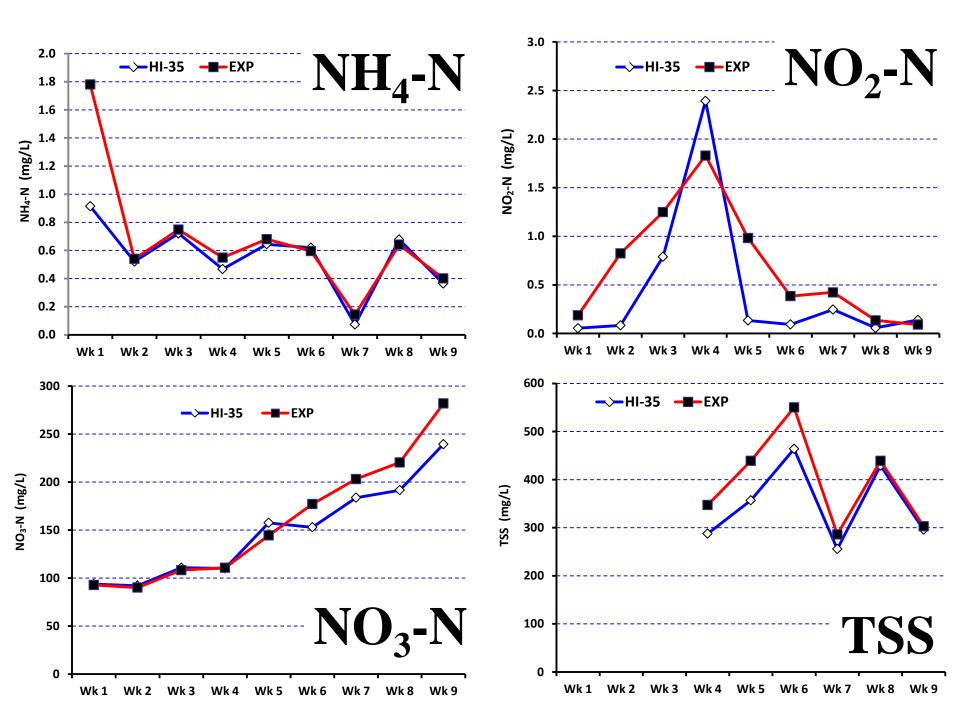




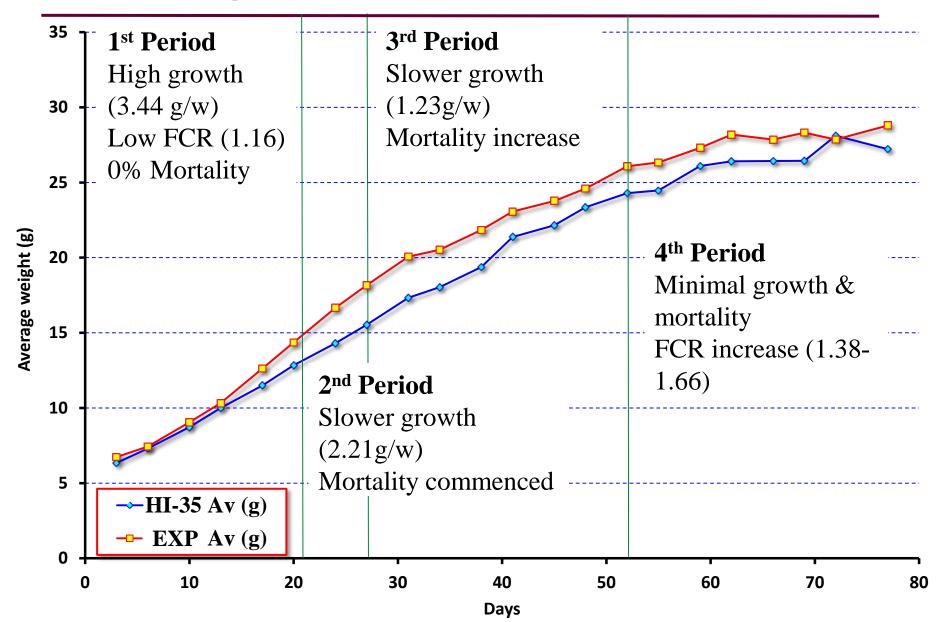




## **Daily WQ Data**


|                  | HI-35 |           | EXP  |           |
|------------------|-------|-----------|------|-----------|
|                  | Mean  | Min - Max | Mean | Min - Max |
| Temperature (°C) | 29.1  | 25.2-30.9 | 29.0 | 25.2-30.8 |
| DO (mg/L)        | 5.1   | 4.2-6.5   | 4.9  | 3.7-6.1   |
| рН               | 7.4   | 7.1-7.9   | 7.3  | 7.0-7.8   |
| Salinity (ppt)   | 29.4  | 26.7-33.6 | 29.8 | 25.3-33.6 |

- ➤ Ammonia and nitrite levels remained low (< 3.35 and 5.19 mg/L, respectively) in all six raceways throughout the trial
- ➤ Nitrate increased from about 61 mg/L at the study initiation to a maximum of 401 mg/L at the end of the trial
- ➤ Although TSS levels in the EXP feed were higher these differences were not statistically different




#### Summary of alkalinity and particulate matter data

|            | HI-35 |         | EXP  |         |
|------------|-------|---------|------|---------|
|            | Mean  | Min-Max | Mean | Min-Max |
| ALK (mg/L) | 147   | 86-219  | 127  | 78-172  |
| TSS (mg/L) | 381   | 142-617 | 428  | 250-692 |
| VSS (mg/L) | 259   | 67-392  | 290  | 133-508 |
| SS (mL/L)  | 14    | 0.5-30  | 12   | 0-40    |



#### **Growth Performance**



Preliminary histology showed enteric and systemic bacterial infection, and indicated that the cause of the mortality was vibriosis

- ➤ 16S rRNA sequencing was performed on three representative isolates from live shrimp
- Results showed presence of *Vibrio* parahaemolyticus, *V. owensii*, *V. communis*, *V. alginolyticus*
- ➤ RT-PCR showed no TSV, YHV, IMNV or PvNV infections in any of the tested samples



- ➤ No statistically significant differences were found in shrimp performance between treatments, except for survival
- ➤ Shrimp fed the HI-35 feed had higher survival than those fed the EXP
- ➤ The difference was attributed to the VPak<sup>TM</sup> in the HI-35 feed
- ➤ The high FCR values observed suggest negative impact from the confirmed *Vibrio* infections
- ➤ Harvested shrimp showed little sexual maturity or sex-related size variations

## **Shrimp Performance**

|                            | HI-35              | EXP                |
|----------------------------|--------------------|--------------------|
| Final Weight (g)           | $27.2 \pm 0.9$     | $28.8 \pm 1.8$     |
| Growth (g/wk)              | $2.05 \pm 0.13$    | $2.16 \pm 0.31$    |
| Total Biomass (kg)         | $328.3 \pm 12.4$   | $311.8 \pm 45.2$   |
| Yield (kg/m <sup>3</sup> ) | $8.2 \pm 0.3$      | $7.8 \pm 1.1$      |
| FCR                        | $1.59 \pm 0.01$    | $1.72 \pm 0.08$    |
| Survival (%)               | $93.1 \pm 3.1^{a}$ | $83.4 \pm 2.7^{b}$ |



Results

Economics

➤ Although there was a little difference in cost between the two feeds (EXP: \$1.94/kg vs. HI-35: \$1.92/kg), a preliminary economic analysis of profitability indicates that the HI-35 and EXP feeds would both be commercially viable when shrimp are sold at \$4.00/lb.



#### **Conclusion**

➤ Under the conditions of this study, the shrimp survived a *Vibrio* outbreak and a marketable sized product was produced



- ➤ Feeding the shrimp with feed supplemented with VPak<sup>TM</sup> resulted in significantly higher survival however, differences in yields were not statistically significant
- ➤ The results suggest closer look into feed supplement as a tool against *Vibrio* infections

## Acknowledgements

- ➤ Texas A&M AgriLife Research, CAPES, Instituto de Ciencias do Mar- LABOMAR of Brazil for funding
- > Zeigler Bros. for the feed
- > YSI for the DO monitoring systems
- > Aquatic Eco-Systems for the foam fractionators
- > Colorite Plastics for the air diffusers
- > Firestone Specialty Products for the EPDM liner













